|
Regular expressions
This section is part of the wxWidgets documentation for "Syntax of the builtin regular expression library". The parts which do not apply to Merge have been omitted. Definitions:
Regular Expression Syntax
Regular Expression SyntaxThese regular expressions are implemented using the package written by Henry Spencer, based on the 1003.2 spec and some (not quite all) of the Perl5 extensions (thanks, Henry!). Much of the description of regular expressions below is copied verbatim from his manual entry. An ARE is one or more branches, separated by '|', matching anything that matches any of the branches. A branch is zero or more constraints or quantified atoms, concatenated. It matches a match for the first, followed by a match for the second, etc; an empty branch matches the empty string. A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a match for the atom. The quantifiers, and what a so-quantified atom matches, are:
The forms using { and } are known as bounds. The numbers m and n are unsigned decimal integers with permissible values from 0 to 255 inclusive. An atom is one of:
A constraint matches an empty string when specific conditions are met. A constraint may not be followed by a quantifier. The simple constraints are as follows; some more constraints are described later, under Escapes.
The lookahead constraints may not contain back references (see later), and all parentheses within them are considered non-capturing. An RE may not end with '\'.
Bracket ExpressionsA bracket expression is a list of characters enclosed in '[]'. It normally matches any single character from the list (but see below). If the list begins with '^', it matches any single character (but see below) not from the rest of the list. If two characters in the list are separated by '-', this is shorthand for the full range of characters between those two (inclusive) in the collating sequence, e.g. [0-9] in ASCII matches any decimal digit. Two ranges may not share an endpoint, so e.g. a-c-e is illegal. Ranges are very collating-sequence-dependent, and portable programs should avoid relying on them. To include a literal ] or - in the list, the simplest method is to enclose it in [. and .] to make it a collating element (see below). Alternatively, make it the first character (following a possible '^'), or precede it with '\'. Alternatively, for '-', make it the last character, or the second endpoint of a range. To use a literal - as the first endpoint of a range, make it a collating element or (AREs only) precede it with '\'. With the exception of these, some combinations using [ (see next paragraphs), and escapes, all other special characters lose their special significance within a bracket expression. Within a bracket expression, a collating element (a character, a multi-character sequence that collates as if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands for the sequence of characters of that collating element. Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing for the sequences of characters of all collating elements equivalent to that one, including itself. An equivalence class may not be an endpoint of a range. Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of all characters (not all collating elements!) belonging to that class. Standard character classes are:
A character class may not be used as an endpoint of a range. There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] are constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as a sequence of word characters that is neither preceded nor followed by word characters. A word character is an alnum character or an underscore (_). These special bracket expressions are deprecated; users of AREs should use constraint escapes instead (see Escapes below).
EscapesEscapes , which begin with a \ followed by an alphanumeric character, come in several varieties: character entry, class shorthands, constraint escapes, and back references. A \ followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. Character-entry escapes exist to make it easier to specify non-printing and otherwise inconvenient characters in REs:
Hexadecimal digits are '0'-'9', 'a'-'f', and 'A'-'F'. Octal digits are '0'-'7'. The character-entry escapes are always taken as ordinary characters. For example, \135 is ] in ASCII, but \135 does not terminate a bracket expression. Beware, however, that some applications (e.g., C compilers) interpret such sequences themselves before the regular-expression package gets to see them, which may require doubling (quadrupling, etc.) the '\'. Class-shorthand escapes provide shorthands for certain commonly-used character classes:
Within bracket expressions, '\d', '\s', and '\w' lose their outer brackets, and '\D', '\S', and '\W' are illegal. (So, for example, [a-c\d] is equivalent to [a-c[:digit:]]. Also, [a-c\D], which is equivalent to [a-c^[:digit:]], is illegal.) A constraint escape is a constraint, matching the empty string if specific conditions are met, written as an escape:
A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are illegal within bracket expressions. A back reference matches the same string matched by the parenthesized subexpression specified by the number, so that (e.g.) ([bc])\1 matches bb or cc but not 'bc'. The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered in the order of their leading parentheses. Non-capturing parentheses do not define subexpressions. There is an inherent historical ambiguity between octal character-entry escapes and back references, which is resolved by heuristics, as hinted at above. A leading zero always indicates an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a suitable subexpression (i.e. the number is in the legal range for a back reference), and otherwise is taken as octal.
Regular Expression Character NamesNote that the character names are case sensitive.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||